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Summary

A code for the simulation of atmospheric flows in 3D is
presented. The underlying mathematical model is fully
compressible, it takes gravity into account but Coriolis
forces, turbulence and viscosity are neglected. The general
numerical code consists of a finite volume discretization on
unstructured hexahedral grids in 3D. The code is presently
being investigated on applications to the calculation of
atmospheric gravity waves on a mesh which has a struc-
tured type and is locally refined near the orography. We
develop two schemes, the main difference between them
lies in the different discretizations for the mass fluxes. We
show that both schemes resolve typical structures of gravity
waves in potential flow, linear hydrostatic motion and
nonlinear non-hydrostatic regime. We compare advantages
and disadvantages of the developed schemes.

1. Introduction

In this paper we will apply an upwind finite
volume scheme for the problem of gravity waves
in atmospheric flow. Four different test cases will
be considered:

(1) Static atmosphere or atmosphere moving
with a constant velocity;

(2) Potential flow;

(3) Linear hydrostatic regime;

(4) Nonlinear non-hydrostatic regime.

As the mathematical model for these test prob-
lems, we consider the nonlinear system of the

Euler equations of gas dynamics, i.e. the conser-
vation of mass, momentum and energy for the
inviscid, compressible flow. In addition we con-
sider suitable boundary and initial conditions.
These problems have been treated in several
papers (see Bonaventura, 2000; Pinty et al,
1995 and the literature cited there).

We use grids which approximate the orogra-
phy by piecewise linear functions, such as shown
in Fig. 1. The piecewise linear representation
provides a better approximation to the orography
in comparison with the approximation by con-
stant functions used in case of finite difference
discretization (see Adcroft et al, 1997). In our
case we prefer a grid consisting of hexahedrons,
since in the viscous case (which will not be con-
sidered in this paper, but for later applications)
the boundary layer at the lower boundary can be
resolved much better by hexahedrons than by
tetrahedrons or prisms. We define two new
schemes in conservation form, which are special
versions of the advection upstream splitting
method (AUSM) by Liou (1993). The AUSM
was developed and tested for weightless com-
pressible fluids. Our versions are developed spe-
cifically for the case where the gravity influence
on the fluid dynamics is important. We have to
use upwind- or upstream-schemes (i.e., schemes
which use the information only from the upwind
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Fig. 1. Vertical section of the computational grid in a po-
tential flow case

direction domain) since central schemes applied
to conservation laws are known to be unstable
(see Kroner, 1996, § 2.4). Note that for test prob-
lems performed in the case without gravity, the
AUSM has turned out to be the most efficient and
most accurate one compared to other numerical
schemes for Euler equations (Wada and Liou,
1995). In particular, for shear flows in compres-
sible viscose fluid it also gives excellent results
(see Egelja et al, 1998). For the time discretiza-
tion we use a simple explicit Euler step. Al-
though we know that for the tests presented in
this paper we expect stationary solutions and that
in this case an implicit method is much more
efficient, we decided to use an explicit one since
we want to use this code also for non-stationary
cases with steep gradients and fronts. It is known
(see Kroner, 1996, p. 85) that in such cases, in
particular for parallelization, the explicit method
is much more efficient and produces less numer-
ical diffusion than the implicit one. In Kiither
(2001) it was shown that an implicit scheme with
arbitrary large time steps and Newton method for
solving the non-linear discrete system does not
have any advantage concerning numerical costs
compared to explicit finite volume schemes with
CFL restrictions. This is pointed out in more
details in Kiither (2001) for getting numerical
approximations for discontinuous solutions of
nonlinear conservation laws.

On the basis of the results of this paper we can
use our tools concerning higher oder discretiza-
tion of the convective terms, automatic grid
refinement and parallelization including dynamic
load balancing, in order to develop an efficient
numerical code for flow simulations at meso-
scale. We are going to show this in a forthcoming

paper.

2. Mathematical model

2.1 Equations

The underlying mathematical model describes
a flow which is compressible, time-dependent,
three-dimensional, inviscid and adiabatic. It con-
sists of the balance equations for mass, momen-
tum and energy

Gp+V - (pv) =0, (1)
at(pvx;) +V. (pUxiV—I-pS:') = P8x; (i = 1a2,3)a
(2)
de+V - (e +p)V) = pvg, 3)
as well as an equation of state for ideal gas
pv?
p=(-1le-=5 | (4)

Equations (1)—(4) present a conservative form
of the Euler equations with source terms. They
are considered in a Cartesian coordinate system
(x1,x2, x3) and have to be solved in the computa-
tional domain

Q = {(x1, %2, %3) € R |x™ <x; <a™,
xrzmnSxZngmxaf(xlax2) SX}} ngnaX}, (5)

where f describes the orography profile. The
following notations are used: 0,= 8/8t V=
(8 0x1,8/0x3,8/x3), & = (81,612, 83)", where
6;; denotes the Kronecker-symbol. Vector g with
components g, =0, g, =0, g, = —g is the
grav1ty acceleration vector, Vv := (vxl,vxZ,vx3)
is the velocity vector, and v =c,/cy is the adia-
batic exponent. The constant parameters ¢, and
cy are the specific heat capacities at constant
pressure and constant volume respectively. With
conservative variables p (density), pv (momen-
tum vector), e (sum of the internal and kinetic
energy), and p (pressure) there are six unknowns
in the system (1)-(4).
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For ideal gases there exists (see Pichler, 1997)
a linear dependence between the internal energy
per unit mass and the temperature T
e/p—v?)2=cyT. (6)

Equation (6) is used in the model (1)—(4) for the
calculation of the temperature distribution in the
atmosphere. Another frequently used variable is
the potential temperature @ defined as follows:

6 = T(po/p)"/.
Here py is the constant pressure which will be
defined below, R =cy(y — 1) is the gas constant.

2.2 Boundary conditions

The following boundary conditions are imposed.
At the lower boundary x; =f(x;,x,), the normal
component of the velocity is zero

(pv) - m=0. (7)
At the inflow (x; = x™") and at the upper bound-
ary (x3 = x3'**) the Dirichlet conditions

p=0" pv=,"(U,0,0) (8)
are used with p° defined as in (10), (12). At
the outflow (x; = x{"®*) and on the “back” (x; =
x;®) and “front” (x, = x7"") boundaries, the
Neumann conditions are imposed:

9(pv - m)

on

In (8), U is a given constant inflow velocity.

=0. )

2.3 Initial data

In order to describe initial data, it is suitable to
present first two stationary solutions of the prob-
lem (1)—(5) with boundary conditions (7)—(9). If
U=0 in (8), the problem has a stationary solu-
tion given by

P’ = poe /%, p = poe/*h,
E=p°/(v=1), x3>f(x1,%), (10)
(pv)O = (0’ 0, O)T (11)

This solution, with Hy := po/(pog), determines the
distribution of the density, pressure and energy in
a motionless isothermal model atmosphere with
the temperature 7°= Po/(poR). The parameters
Do, Po are respectively the constant pressure and
density at the lower boundary of the motionless

isothermal atmosphere without orography, i.e.
with j(xl, X)) = 0.

If f(x;,x,) =0, in (5), then for all U#0 there
exists a stationary solution of the problem
(1)—=(5), (7)—(9) determined by

pO — poe—X3/Ho, pO j— poe—X3/Ho,
& =p°/(y— 1)+ p°U?/2, (12)
(pv)° = p°(U,0,0)". (13)

For all test problems in this paper we consider
(1)-(4) in Q with boundary conditions (7)—(9)
and initial conditions given in domain 2 by
(12), (13). For the four test cases we use different
domains (5) and different inflow velocities U in
boundary conditions (8) and initial data (13).

3. Numerical method

3.1 Discretization by finite volume scheme
For the discretization of the system (1)—(5), with
boundary conditions (7)—(9) and initial data (12),
(13), we use equation
B(pvs) + V - (pvsv + (p — P°)5)
= (p - PO)gX; (i=1,2, 3), (14)

instead of (2), where po and p0 are given by (10).
Equation (14) is equivalent to (2).

The discretization consists of an explicit time

dependent upwind finite volume scheme (see
Kroner, 1997)

(an,
7l

n+1

q 3 Gyl q) + (A1), 1

e N(@)
(15)

on an irregular hexahedral 3D mesh constructed
by Schott (2001) (see, e.g., Fig. 1). Here T;,ie N
denote the cells of the grid, 7' is the element-
wise constant approximation of the exact solu-
tion q = (p, pvy,, PUxy, PV, e)” in the cell T; with
its volume |Tj| at the time Y +%'(Atr),. The in-
dices of the neighbouring cells of T; are denoted
by N(i). The right side is discretized by r} =

(O,Oa 07 (p:l - p?)g’ —gp,-(vx3 )i)T'

3.2 Numerical flux

Now we present the definition for the flux Gy
between the cells i and j. The flux G;; has to be
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calculated perpendicular to the face Sj; of the cell
T;. We denote first through v the projection of the
velocity vector v onto the normal n of the face S;
and through u, w, and h — respectively the tan-
gential projections of v on S; and the enthalpy of
the gas per unit mass, h:=(e+p)/p. Then we
define the flux as follows:

Gy(9: )
2(pv)ij
) 2(p?); +2(p - P°);
=5 | oyt + ) = (o0l — w)
(pv) (Wi + wy) — |(pv) | (w; — wi)
(0v);;(hi + k) — |(pv) | (Bj — hi)
(16)
For the flux of the non-hydrostatic pressure
- po),-j we propose
P —po),, =p} +p; — (0} +1))/2, (17)
where ({7 pj are the values of hydrostatic pres-
sure p- in the gravity centres of cells i, j, the

pressures p;, p; are defined as in the AUSM
scheme (see Llou 1993):

o p; tea)? (UI-I-CM) (2- ;:), if |v|<cm (18)
' Di %M otherwise,
(U"‘cm)2 2 Yj :
+ L) if |y <c
Pj—-:= pJ_—H_( C,,,) I]l—m (19)

rl”;l
p] 2v;

cm = max(/(vpi/pi), /(70;/ p;))- In the latter
formula i, j are given by (17)

To complete the definition of the flux Gy, it re-
mains to define the mass flux (pv),; 5 and the nor-
mal momentum flux (pv?);. Now in Sects. 3.3
and 3.4, we construct two schemes with the
above form of Gy, but different definitions for

(pv); and (pv®);.

otherwise,

3.3 The scheme with the AUSM,
U-splitting mass flux

In the first scheme, the mass flux in (16) is
defined as follows:

COMES (vu(px+pf logl(p; — pi))  (20)
with

vj = v} +v;, (21)

and

o Jlel e g<e,,

CARSES T i i (22)
_I_12 otherwise,

and
— el f |yl <c,

vj' =19, |fo” = (23)
~5L otherwise.

The mass flux (20) has the form of the advection
upstream splitting method (AUSM), U-splitting
by Liou (1993). The normal momentum flux in
(16) is determined by

(p?); = [(pv),,(vz+vj) |(ov) 41(; — v)).

(24)

Formulae (15)—(24) define the numerical scheme
to which we shall refer as to the scheme with the
AUSM, U-splitting mass flux.

Let us make some comments on the scheme
(15)—(24). One can show that the convection and
acoustic propagation are treated separately in this
scheme. Really, with the help of (20), (24), the
flux (16) can be written as a sum of the convec-

tive and pressure fluxes, Gj; and G, as follows:

Gi(a:,9) =GY (a:,9) + G (a,,q))

0
. 2(p—p");
_ { q),' if Vjj Z 0 0 v
~ Y\ @; otherwise, 0 ’
0

where ®;/; = (p, pv, pw, pu, ph), ;/j» the pressure-
difference (p —p ),] and velocity vy at the cell
interface are defined by (17) and (21) respec-
tively. We see that v;; can be treated as the advec-
tion velocity, i.e. as the velocity at which the
convective quantities, which are the components
of the vector ®,/;, are transfered. The convective
flux G (q,, q;) depends on the sign of the advec-
tion velocuy v; in such a way that the advective
quantities at the cell interface are determined
with the help of the upwind extrapolation. The
split functions (18), (19), (22) and (23) are de-
fined by using the characteristic speeds of the
acoustic waves traveling towards the face S§j;
from the adjacent cells T; and T;. We use here
these definitions because, in the case without
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gravity, they have been successfully tested by
Liou (1993), Liou and Wada (1993). The second-
order polynomials (v; + ¢,)* and (v; — cm)” are
used in the split functions for the subsonic
region. This is made because it yields the func-
tions p;"(v:), v (v;) and py (vy), v; (v;) differenti-
able at |v;/;| = cpm.

We show now that the scheme (15)—-(24) repro-
duces the static isothermal atmosphere (10), (11)
at every time step n under appropriate discretiza-
tion of the boundary conditions (see Sect. 3.5
below). Really, with v; = v; = 0, from (22), (23)

it follows that v} = —v;] =co/4 with ¢g:=

v/ (9po/po). Thus we have v; = 0 in (21). Hence
the mass flux (20) is equal to zero. From (24) it

follows that (pv2) = 0. From (18), (19) we ob-
tain p; =p?/2, pj =p; 9/2. Therefore, in (17),
the pressure difference (p — po),j is equal to zero.
Consequently, all components of the flux vector
(16) are zero. Since, for the motionless isothermal
atmosphere (10), we have r} = 0 in Eq. (15), it
follows that q*! = g7 for every time step n.

Note that the study by Wada and Liou (1997)
shows the mass flux (20) to be not appropriate for
construction of schemes for problems with strong
discontinuities, because the use of the discretiza-
tion (20) leads to overshoots at shock waves.
We propose, therefore, the scheme (15)-(24) for
simulations of compressible gravity-dependent
flows without strong discontinuities.

Notice, that for the normal momentum flux

(pv?),; i we have tested also a splitting defined as
follows:
(p?); = v (pv), + v} (pv)), (25)
as well as a linear combination of (24) and (25),
constructed analogously to that one as described
by Wada and Liou (1997) in the development of
their AUSMDYV scheme. In the test problems, we
did not find any advantage of the schemes which
include discretization (25).

3.4 The scheme with the density splitting

In the second scheme we present the mass flux in
(16) as a sum of two fluxes

(pv); = (p"v);; + [(p — P")0);- (26)
For the mass flux (p° v); with the hydrostatic
density, we use the AUSM U-splitting form

(), = (vu(p, +07) — ol — 20)),  (27)

where v; is defined as in (21). The mass flux
[(p— po)v]y is defined as follows:

[(,0 )v]y = U;{-h(pl 1) + U] (p} - p;))
(28)
In (28), the velocities v}, v are defined by (22),

[ ]

(23), respectively. Discretization (28) is analo-
gous to that one used by Van Leer (1991) for
the mass flux in the case without gravity field.
The difference between the discretization (28)
and that one by Van Leer is that we discretize
only the part of the mass flux, which corresponds
to the deviation (p — p %) of the density p from the
hydrostatic density p°.

Notice that the use of the Van Leer’s splitting
(pv); := v} pi + 05 p; (29)
for the total mass flux (pv), in (16) would lead
for the static isothermal atmosphere (10), (11)
to (pv); = (o) — pY)co/4 #0, and, as a con-
sequence, it would lead to an excessive numer-
ical dissipation confirmed by our numerical
simulations.

For the definition of the normal momentum
flux (pv?); in (16) we used the idea by Wada
and Liou (1997) to construct a linear combina-
tion of two different splittings. For the normal
momentum flux (pv?);, we construct a sum

(p?)y = (1+9)[(p = ")y
+ (1= 9)[(p — PO))p + 2(0°%);

(30)
with
() 1= [0y 0+ ) = 1(B°0)y 01— )
(31)
[(p— P")?y =0} [(p — P°)ol; + v} [(p — )],
(32)
(o~ )1 =5 11(— )0l (o)

—llo = ")l (i = )]}, (33)
of, v7 as in (22), (23), ("), [(p — %)V,
defined by (27), (28), and
s := min{1,K(p; — p;)/min(p{,p))}.

In the latter formula, K is a constant and for the

test problems presented in this paper the value
K =10 has been used.
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We use the subscripts V, D in (32), (33) in
order to stress that the splitting of (32), (33) is
similar to the AUSMYV and AUSMD, respectively,
as introduced by Wada and Liou (1997) but the
definitions for v;",v;” in (22), (23) and, thus also
for vy in (21), differ from the corresponding defi-
pitions in Wada and Liou (1997).

Note that Wada and Liou (1997) have shown
the use of two different splittings (AUSMY,
AUSMD) in the normal momentum discretization
together with the Van Leer’s splitting (29) in the
mass flux discretization to be very effective for a
good resolution of shock waves in weightless
gases. It makes, therefore, reasonable to assume
the scheme (15)-(19), (21)-(23), (26)-(28),
(30)—(33) to be applicable also to problems with
strong discontinuities for compressible fluids in
gravity field. We shall call the discretization
(15)-(19), (21)-(23), (26)—(28), (30)—(33) the
density splitting scheme. The density splitting
scheme reproduces the motionless isothermal
atmosphere. This can be shown similarly as in
the case of the AUSM, U-splitting mass flux.

3.5 Discretization of the boundary conditions

To implement the boundary conditions we con-
struct the ghosts cells for all boundary hexahe-
drons. On every boundary face, the adjacent
hexahedron is reflected into the outer domain.
In the ghost cells which touch the inflow and
the upper boundary, the Dirichlet conditions are
given. At the outflow boundaries, the Neumann
conditions are implemented by means of constant
extrapolation of the corresponding values from
the first inner hexahedrons. Then, all six required
fluxes in the inner boundary cells can be calcu-
lated. For calculations of the numerical fluxes in
boundary cells at the lower boundary, the values
in ghost cells are given as follows. For the
numerical scheme with the AUSM, U-splitting
mass flux they are given by

Pgi = Pis Vgi = — Vi, €gi =€ — Zﬂiv,-z,
Pei = Py +Pi — P;- (34)
For the scheme with the density splitting, v,; and
Pgi are given as in (34), while p,; and e, are
determined by
Pgi = pg,- +pi— P?, €gi = € — 2Piv,?

+ (pgi — )i/ (v = Vi) ~ 07 /2], (35)

The index gi denotes the ghost cell constructed
by the symmetrical reflection of the boundary
element 7;. We denote through pJ;, pY; the values
of the density and pressure in the gravity center
of the ghost cell gi, which are determined by
(12). The choice of pg; in (34), (35) ensures the
absence of mass transfer across the mountain sur-
face. The choice for pg; in (34) guarantees no net
transfer for the normal momentum across the
mountain surface in the reference state (10), (11).
Note that Pinty et al (1995), and Bonaventura
(2000) consider the Neumann condition 0,0 =0
for the potential temperature 6 as the numerical
boundary condition at the lower boundary. Our
choice for e, corresponds to the numerical
boundary condition 3,T=0 for the temperature
T given by (6). If we extend our model to the
viscous case, then we can use the condition
0,T=0 as the physical boundary condition. Our
numerical solutions approximate the correspond-
ing solutions of the compressible Navier—Stokes
equations at small coefficients of the viscosity
and the heat diffusion in the idealized case of
thermally insulated mountain (see, e.g., p. 443
in Oliger and Sundstrom, 1978).

Near the upper, inflow and outflow boundaries,
we have to introduce dissipative layers (see
Klemp and Lilly, 1978). Such a modification of
the boundary conditions is necessary in order to
avoid the reflection of outgoing gravity waves.
We do this by using the known sponge layers
technique proposed by Pinty et al (1995).

4. Test problems

We consider the following test problems: static
atmosphere or atmosphere moving with a con-
stant velocity, potential flow, linear hydrostatic
regime, and nonlinear non-hydrostatic regime.
In the first case we consider the isothermal atmo-
sphere. In the latter three cases we restrict the
consideration to the model atmosphere which is
isothermal in the motionless state.

If the reference state is the isothermal atmo-
sphere moving with a constant velocity, then the
Euler equations linearized around this state admit
stationary solutions describing 2D waves over a
long symmetric mountain with a very small char-
acteristic height (linear hydrostatic waves, see
Pichler, 1997). These waves have a periodic
structure in the vertical direction, and they
quickly decay in the horizontal direction with
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growing distance from the mountain symmetry-
plane. Other possible regimes are non-linear non-
hydrostatic motion and potential flow. They occur
over smaller scale mountains. The nonlinear non-
hydrostatic motion (lee waves) occurs under con-
siderably small overflow velocities. The classical
lee waves are the quasi-periodic waves extending
downstream from a mountain. The potential flow
is the mountain overflow without formation of
lee waves. The flow becomes potential, if the
characteristic overflow time is much smaller than
the period of gravity oscillations equal to 27/N
with

N :=g/\/c,T° (36)

the Brunt-Vaisala frequency. Such flow occurs
under large overflow velocities. The described
wave regimes have been used in recent works
by Pinty (1995), Bonaventura (2000) in order
to test the numerical codes for atmospheric flows.
For all tests, the physical parameters have the
same values: c,=1004J/(kgK), cv= 7171/
(kgK), g=9.81m/sec?, po=1.225kg/m>, po=
101325 Pa. Equations (1)—(9) are used in dimen-
sionless form, and all results below will be also
presented in the dimensionless form. For dimen-
sionless variables we shall keep the same nota-
tions as for the corresponding dimensional ones.
To transfer the results into dimensional form, the
following characteristic scales have to be used:

Variable Scale Value in MS
density Po 1.225kg/m>
velocity po/ o 287.60m/sec
pressure Po 101325 Pa
length H 20000 m

time H/~\/po/po 65.54 sec
temperature Po/(PoR) 288.15K

We performed simulations with Courant numbers
smaller or equal to 0.5.

4.1 Static atmosphere or atmosphere
moving with a constant velocity

In order to validate the numerical code we have
considered in this section the following test
problems:

Test problem I: Static atmosphere without orog-
raphy. We consider (1)-(5) with boundary

conditions (7)-(9), fix;,x;)=0 and initial data
given by (10), (11). The exact solution q? is
given by (10), (11).

Test problem 2: Atmosphere without orography,
moving with a constant velocity. We consid-
er (1)—(5) with boundary conditions (7)—(9),
fix1,x2) =0 and initial data given by (12), (13).
The exact solution qg is given by (12), (13).

Test problem 3: Static atmosphere with orog-
raphy. The same as the test problem 1, but
flxy, x2) is given by the Agnesi profile

ho
X1,X2 37
flx,x) = Tr/a? (37

with the height kg and the half-width a. The exact
solution is given by (10), (11).

Note that, in the presence of the orography
(i.e., for f#0), we cannot expect the solution
(12), (13) with U #0, since, in the problem under
consideration, these data will not satisfy the
boundary condition (7).

For all test problems we apply the AUSM, U-
splitting mass flux and the scheme with the den-
sity splitting, defined by the formulas (15)-(24)
and (15)-(19), (21)-(23), (26)—(28), (30)-(33)
correspondingly.

In the first two problems, the solutions q¢ and
qg describe respectively the state of the motion-
less isothermal atmosphere and of the isothermal
atmosphere moving with a constant velocity U
along the horizontal plane. We compute the
numerical solutions q{*™ and q3"™ in the domain

Q= {(x1,%2,x3) €ER*| - 5<x, <5,
0<x,<02,0<x3<1} (38)

on grids with cell diameter /=~ 0.25 until the time
t=>5000 at which we calculate L' errors. We
compute the solution q2 with U=0.111 in the
boundary condition (9) and initial data (13). For
both numerical schemes, the AUSM, U-splitting
mass flux and the scheme with the density spht—
ting, the L' errors |lq}, — gf"|l; and ”qZk
q’2"}"“|[ } for each component k (k = 1 5) of
the solution vector have the order 10~

In the third problem, we perform the s1mu1a-
tion in the domain

1= {(xl’x21x3) € R3I —=5<x<5,0<x<0.2,
flx1,x2) <x3<1}, (39)

where f(x;,x,) is given by (37) with sy =0.1 and
a=0.1. Different grids have been used with the
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characteristic dimensions of hexahedrons Ax; ~
0.25, Ax,~0.025, Ax3=~0.25. As in the above
two cases, the L' errors are computed at the time
t=5000.

For the scheme with the AUSM U-splitting
mass flux, we obtain the largest L' error for the
pressure. Its value is 2 x 10~ *. The L' error for
the velocity component v, in the direction per-
pendicular to the plane of motion has the order
10~ 2. For other components of the velocity the
L' error have the order smaller than 10~7.

For the scheme with the density splitting the
error for all variables is of the order of magnitude
smaller than 10~*, except of the longitudinal
velocity components v, v;. For these compo-
nents the maximal errors which we have found
were correspondingly 2.7 x 1073 and 1.2 x
10~ 2. The numerical error for v, is of the order
of the grid size in the direction x,. Our numerical
experiments have shown that large errors for the
velocity normal to the plane of motion are due to
the Van Leer splitting in (28).

Notice that, for the static atmosphere, the
results of test problems 1 and 3 can be compared.
The comparison shows that no generation of
spurious flows due to the presence of the orogra-
phy occurs when the AUSM, U-splitting mass
flux is applied. However, if the scheme with the
density splitting is used, then, in the presence of
the orography, the L' errors for the velocity com-
ponents are larger. The maximal error is not bet-
ter than O(Ax,).

4.2 Potential flow

Consider now the potential flow regime. If the
orography is given by (37), then to compute this
regime we have to satisfy the conditions:
ho/a~ O(1), N a/U < 1. Here the Brunt-Vaisala
frequency N is defined by (36), U is the inflow
velocity (used in (8), (12)). We perform the simu-
lations in the domain

Q = {(x1,%2,%3) €R®| — 0.125<x; <0.125,
0<x,<0.025, f(x1,%) <x3<0.25}, (40)

where fix;,x,) is given by (37) with hp=a=
5 x 10~ 3. The thickness of the horizontal sponge
layer is 0.125. Both vertical sponge layers have
the thickness 0.06. On the boundaries of the
domain (40), boundary conditions (7)—(9) are
imposed. Initial conditions are given by (12),

(13). In (8) and (13), the velocity U is equal to
0.0625.

The grid is presented in Fig. 1. The refinement
is made near the lower boundary and over the
mountain. The vertical dimension of hexahe-
drons Ax; has a value between 7.5 x 10~ and
4 x 103, The value of Ax, lies between 2.7 x
1073and 9 x 103, Ax, =5 x 10> for all cells.

The scheme with the density splitting is used.
The isolines for the horizontal and vertical veloc-
ity are shown in Fig. 2a, 2b and that ones for
the potential temperature are presented in Fig. 3.
The results correspond to the time 7 =69.68. The

005 . X3
004 0.063
003
0064
00625

002

0.06247
001 0.0625

//Nocw
005 0.00 oos %1

Fig. 2a. Potential flow case. Isolines of the horizontal ve-
locity, with contour interval for the non-marked isolines
equal to 0.001
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0.02
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Fig. 2b. Potential flow case. Isolines of the vertical velocity
with contour interval of 0.0005
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Fig. 3. Potential flow case. Isolines of the potential tem-
perature with contour interval of 0.0037

quasisymmetrical structure of the potential flow
is well realized, as can be seen in Fig. 2a, b. The
structure of the potential temperature isolines
shown in Fig. 3 confirms the absence of lee-
waves. The computed values for the velocity v,
turn out to be lower than 4 x 10~ '2 for all times.
The structure of the isolines of the velocity com-
ponents is similar to that one computed for this
case by Pinty et al (1995). The structures for the
potential temperature isolines are, however, dif-
ferent in a rather thick domain over the orogra-
phy, as can be seen from comparison of Fig. 3
with Fig. 17 by Pinty et al (1995). We have
already noted the fact that the numerical bound-
ary conditions in our test problems correspond to
the idealized thermally insulated mountain while
that in the work by Pinty et al — to the mountain
across which no potential temperature flux is
transferred. In order to verify whether this fact
is the reason of the difference, we have computed
also this case with the thermal numerical condi-
tion as in Pinty et al (1995). But, again, we have
obtained a structure very similar to that one
shown in our Fig. 3. We assume that the differ-
ence can be explained by the difference in the
discretization of the mountain surface. Our dis-
cretization is with linear slopes which are sym-
metric with respect to the symmetry plane of the
agnesi profile while Pinty et al (1995) use the
grid with the equally spaced vertical levels and
with the horizontal levels which discretize the
agnesi profile non-symmetrically as can be seen
in Fig. 17. Note also, that the same results as

shown in Figs. 2a, b and 3 were obtained in simu-
lations in which we used the scheme with
AUSM, U-splitting mass flux.

4.3 Linear hydrostatic regime

If the orography is given by (37), then we can
compute the periodic waves in the linear hydro-
static regime by satisfying (see Pichler, 1997) the
conditions: hp/a < 1 and Na/U>> 1 with N as in
(36), and U the inflow velocity which we use in
(8, (13).

To simulate this regime, we perform the simu-
lations in the domain

Q= {(x1,%,x) €ER?| — 12.5<x, <12.5,
OS)CZ §0.25,f(x1,x2) S.X351.2}, (41)

where fix;,x;) is given by (37) with hg=35 X
10> and a=0.8. The horizontal sponge layer
has the thickness equal to 0.35. The vertical
sponge layers have the thickness 1.6 in the case
when the scheme with the AUSM, U-splitting
mass flux is used. For the scheme with the den-
sity splitting, the thickness of both vertical
sponge layers is equal to 3.2. The initial and
boundary conditions are as in the previous case,
however the inflow velocity U in (8), (13) is
equal to 0.111.

The results presented in Fig. 4a, b have been
simulated with the numerical scheme with the
AUSM, U-splitting mass flux on the regular grid

Fig. 4a. Structure of isolines of the horizontal velocity in a
linear hydrostatic case, obtained at rescaled time 7= 56.82
with the numerical scheme with the AUSM, U-splitting
mass flux
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5

Fig. 4b. Structure of isolines of the vertical velocity in a
linear hydrostatic case, obtained at the rescaled time
t=56.82 with the numerical scheme with the AUSM, U-
splitting mass flux

x3
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Fig. 5. Vertic-al velocity in a linear hydrostatic case at the
rescaled time t=69.35. Simulation is performed with the
density splitting scheme

with the cell dimensions 0.156 x 0.02 x 0.125. In
Fig. 5, the scheme with the density splitting was
used on the grid which, in comparison with the
grid in Fig. 4a, b has a refinement on the bottom
boundary. In Fig. 4a, the isolines of the horizon-
tal velocity for the time = 56.82 are presented.
The figure shows that, at this time, the periodic
structure of the gravity waves is already formed
in the domain between the mountain and the
sponge layer at the upper boundary. The structure
of the horizontal velocity isolines obtained for
the same time with the scheme with the density

splitting is very similar to that one shown in
Fig. 4a. Figure 4b shows the existence of a short
wave numerical instability of the scheme with
the AUSM, U-splitting mass flux. The results in
Fig. 5 are presented for a later time (¢ =69.35), a
better resolution of the flow structure with the
density splitting scheme can be seen here. The
L' error for the velocity in direction normal to
the plane of motion is equal to 4.6 x 10, This
error is considerably large compared with the
error for the scheme with the AUSM, U-splitting
mass flux, which has the order less than 10~ 1°,

4.4 Nonlinear non-hydrostatic regime

To compute the lee waves downstream the moun-
tain (37) in the nonlinear non-hydrostatic regime,
we have to choose the values of the mountain-
parameters hy, a and of the inflow velocity U in
(8), (13) so that the condition hy/a~ O(1), N
a/U~ O(1) are satisfied.

We simulate this case in the following domain:

Q = {(x1,%2,x3) ER’| — 1.25<x; <2.25,
0<x,<0.25, f(x1,%) <x3 <2} (42)

for flx;,x;) defined by (37) with hy=0.045,
a=0.05. The thickness of the horizontal sponge
layer is equal to 1. For the left vertical sponge
layer the thickness is equal to 0.25, and for the
right one — to 0.25. Initial conditions are given by
(12), (13) and boundary conditions — by (7)—(9).
The inflow velocity U in (8), (13) is equal to
0.046.

The results obtained at the rescaled time t=
44 .45 are shown in Figs. 6a, b, 7, and 8. The steady
state is not yet reached. No essential difference
between the results obtained with schemes
(15)-(24) and (15)—-(19), (21)-(23), (26)—(28),
(30)-(33) have been found in this case. The com-
puted L' errors for the component v, of the veloc-
ity vector have the order of magnitudes 1077,
10~ ' for the schemes with the density splitting
and with the AUSM, U-splitting mass flux,
respectively. The results are presented in these
figures for the numerical scheme with the density
splitting on the grid refined near the bottom
boundary and above the mountain, with the fol-
lowing characteristic dimensions: Ax; € (0.006,
0.017), Ax, =0.025, and Ax;€(0.0035, 0.01).

In Fig. 6a, b, the structure of isolines is shown
for the velocity components. The quasi-periodical
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Fig. 6a. Horizontal velocity in a nonlinear non-hydrostatic
lee wave test case at rescaled time ¢r=44.45. Numerical
scheme is the density splitting scheme
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Fig. 6b. Vertical velocity in a nonlinear non-hydrostatic lee
wave test case at rescaled time r=44.45. Numerical
scheme is the density splitting scheme

structure of lee waves is well reproduced. The
flow accelerates down the mountain as in analo-
gous test by Bonaventura (2000). Also, the struc-
ture of the velocity vectors near the mountain,
shown in Fig. 7, is well resolved. The structure
of the isolines of the potential temperature in
Fig. 8 confirms existence of the lee waves.
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Fig. 7. Velocity field in a nonlinear non-hydrostatic lee
wave test case at rescaled time ¢r=44.45. Numerical
scheme is the density splitting scheme
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Fig. 8. Potential temperature in a nonlinear non-hydrostatic
lee wave test case at rescaled time ¢=44.45. Numerical
scheme is the density splitting scheme

5. Conclusion

In this paper, we have developed a finite volume
scheme on unstructured hexahedral grids in 3D
for the simulation of gravity waves arising
around orographies. In our test problems we con-
sider idealized orographies with a simple shape,
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for approximation of which we use meshes of
“finite-difference” type (structured grids). One
example is shown in Fig. 1 where a vertical sec-
tion of the mesh is presented. For the test prob-
lems, the hexahedral cells could be numbered
with the help of a set i, j, k of integers i, j and k.
But in our numerical code the grid cells are num-
bered individually, and, therefore, arbitrary un-
structured grids can be considered. The use of
unstructured grids can provide a better represen-
tation of complicated 3D-orographies by piece-
wise linear functions.

Two different discretizations have been sug-
gested: the scheme with the AUSM, U-splitting
mass flux given by (15)-(24) and the scheme
with the density splitting defined by (15)—(19),
(21)-(23), (26)—(28), (30)—(33). They have been
tested for plane-parallel 3D atmospheric gravity
waves. Good agreement of flow structures with
that ones in the literature have been shown.

The scheme with the AUSM, U-splitting mass
flux is similar in form to the AUSM schemes (see
Liou, 1993; Liou and Wada, 1997). The differ-
ence is that we use the U-splitting only for the
mass flux (20), but for all other components of
the flux (16) we perform the splitting with the
mass flux itself. The advantage of this scheme
is that it produces no essential numerical errors
in the direction perpendicular to the plane of
motion. Its disadvantage is the existence of short
acoustic waves revealed in the linear hydrostatic
case.

In the scheme with the density splitting, we
decompose the mass flux into two parts. One of
them contains only the hydrostatic density (pov),-j
and is discretized by the AUSM, U-splitting. For
the discretization of the mass flux [(p — p°)v];.,
we use the Van Leer’s form of the splitting. I]n
this scheme, the discretization of the normal
momentum flux is also based on the decomposi-
tion of the density into two parts: p° and p — p°.
Calculated examples demonstrate the absence of
the short acoustic waves. However, in the linear
hydrostatic test problem, numerical errors for the
velocity normal to the plane of motion are con-
siderably large (see Sect. 4.3). The development

of a higher-order discretization is therefore
necessary to improve the resolution.

For the code we have used a data structure such
that our tools for higher-order discretization,
dynamic local mesh refinement and paralleliza-
tion, including dynamic load balancing can be
used very easily.
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